Abstract

Bats, which echolocate using broadband calls, are believed to employ the passive acoustic filtering properties of the head and pinnae to provide spectral cues which encode 3-D target angle. Microchiropteran species whose calls consist of a single, constant frequency harmonic (i.e., some species in the families Rhinolophidae and Hipposideridae) may create additional acoustic localization cues via vigorous pinna movements. In this work, two types of echolocation cues generated by moving a pair of receivers aboard a model sensor head are investigated. In the first case, it is supposed that a common 3-D echolocation principle employed by all bats is the creation of alternative viewing perspectives, and that constant frequency (CF) echolocators use pinna movement rather than morphology to alter the acoustic axes of their perceptual systems. Alternatively, it is possible rhinolophids and hipposiderids move their ears to create dynamic cues--in the form of frequency and amplitude modulations--which vary systematically with target elevation. Here the use of binaural and monaural timing cues derived from amplitude modulated echo envelopes are investigated. In this case, pinna mobility provides an echolocator with a mechanism for creating dramatic temporal cues for directional sensing which, unlike interaural timing differences, do not degrade with head size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.