Abstract

1. Acoustic reflections from a wing beating moth to an 80 kHz ultrasonic signal were recorded from six different incident angles and analyzed in spectral and time domains. The recorded echoes as well as independent components of amplitude and frequency modulations of the echoes were employed as acoustic stimuli during single unit studies. 2. The responses of single inferior colliculus neurons to these stimuli were recorded from four horseshoe bats,Rhinolophus ferrumequinum, a species which uses a long constant frequency (CF) sound with a final frequency modulated (FM) sweep during echolocation. All neurons responding to wing beat echoes reliably encoded the fundamental wing beat frequency as well as the more refined frequency and amplitude modulations. 3. These neurons may provide the bat a neural mechanism to detect periodically moving targets against a cluttered background and also to discriminate various insect species on the basis of their wing beat patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.