Abstract

A novel zerovalen-iron-biochar composite (nZVI/SBC) was synthesized by using FeCl3-laden sorghum straw biomass as the raw material via a facile one-step pyrolysis method without additional chemical reactions (e.g., by NaBH4 reduction or thermochemical reduction). The nZVI/SBC was successfully employed as an activator in phenol degradation by activated persulfate. XRD, SEM, N2 adsorption-desorption and atomic absorption spectrophotometry analysis showed that the nanosized Fe0 was the main component of the 4ZVI/SBC activator, which was a mesopore material with an optimal FeCl3·6H2O/biomass impregnation mass ratio of 2.7 g/g. The 4ZVI/SBC activator showed an efficient degradation of phenol (95.65% for 30 min at 25 °C) with a large specific surface area of 78.669 m2·g-1. The recovery of 4ZVI/SBC activator after the degradation reaction of phenol can be realized with the small amount of dissolved iron in the water. The 4ZVI/SBC activator facilitated the activation of persulfate to degrade phenol into non-toxic CO2 and H2O. The trend of Cl-, SO4 2- and NO3 - affected the removal efficiency of phenol by using the 4ZVI/SBC activator in the following order: NO3 - > SO4 2- > Cl-. The one-step synthesis of the nanosized zerovalent-iron-biochar composite was feasible and may be applied as an effective strategy for controlling organic waste (e.g. phenol) by waste biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call