Abstract

In this study, we present a facile one-step method to synthesize graphene-Au nanoparticle (NP) hybrid materials by using HAuCl4-loaded poly(styrene)-block-poly(2-vinylpyridine) (PS-P2VP) micelles as solid carbon sources. N-doped graphene with controllable thickness can be grown from PS-P2VP micelles covered by a Ni capping layer by an annealing process; simultaneously, the HAuCl4 in the micelles were reduced into Au NPs under a reductive atmosphere to form Au NPs on graphene. The decoration of Au NPs leads to an obviously enhanced electrical conductivity and a slightly increased work function of graphene due to the electron transfer effect. The graphene-Au NP hybrid materials also exhibit a localized surface plasmon resonance feature of Au NPs. This work provides a novel and accessible route for the one-step synthesis of graphene-Au NP hybrid materials with high quality, which might be useful for future applications in optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.