Abstract

ABSTRACTHybrid organic–inorganic materials made from sol–gel precursors can be used as anticorrosion barriers on metal substrates. The modification of epoxy resins with silicones is an interesting approach toward the synthesis of hybrid materials that combine the advantages offered by epoxy resins with those of silicones. In this study, novel hybrid epoxy‐silicon materials were synthesized using sol–gel chemistry and subsequently functionalized with 4,4′‐methylenebis(phenyl isocyanate), incorporating urethane functionality into the final polymer. The study screened five different epoxide precursors for use in the synthesis of the new hybrid materials and optimizing their anticorrosion properties. Spectral characterization confirms the proposed chemical structures of the newly synthesized polymers. The newly developed polymers were painted on mild steel panels, thermally cured, and their thermal, surface morphological, adhesion, and anticorrosion properties were fully characterized. The new coatings were found to have excellent thermal stability and adherence properties to steel surface. The results of corrosion testing on coated steel panels following long‐term immersion in a 3.5 wt % aqueous NaCl medium revealed that the polymer prepared using the epoxide precursor bisphenol A diglycidyl ether provided the best anticorrosion protection property among the synthesized polymers. This could be attributed to the excellent integrity and crosslink density properties in addition to the lack of microdefects in the surface of this coated sample as confirmed by scanning electron microscopy analyses. The newly prepared hybrid coatings reported in this study are very promising as an alternative to toxic chromate‐based coatings. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43947.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call