Abstract

Uniform and monodisperse Co-doped In2O3 nanorods were fabricated by a facile and environmentally friendly hydrothermal strategy that combined the subsequent annealing process, and their morphology, structure, and formaldehyde (HCHO) gas sensing performance were investigated systematically. Both pure and Co-doped In2O3 nanorods had a high specific surface area, which could offer abundant reaction sites to gas molecular diffusion and improve the response of the gas sensor. Results revealed that the In2O3/1%Co nanorods exhibited a higher response of 23.2 for 10 ppm of HCHO than that of the pure In2O3 nanorods by 4.5 times at 130 °C. More importantly, the In2O3/1%Co nanorods also presented outstanding selectivity and long-term stability. The superior gas sensing properties were mainly attributed to the incorporation of Co, which suggested the important role of the amount of oxygen vacancies and adsorbed oxygen in enhancing HCHO sensing performance of In2O3 sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.