Abstract
In this study, we showcase the fabrication of two nanorings resembling beehives using intricately designed donor-acceptor (D-A) fluorophores. The D-A fluorophores, featuring three twisted fluorene groups on each side of the acceptor group, adopt a bent conformation that promotes the creation of a nanoring morphology upon aggregation. With porosity for maximum binding sites, high emission efficiency, and well-organized arrangements, the nanoring-based hives offer exceptional sensitivity and selectivity in the detection of organic sulfides. Particularly, nanorings formed from benzselenodiazole-containing molecules exhibit heightened sensitivity, achieving a limit of detection (LOD) of 0.2 ppb for dimethyl sulfide and 17 ppb for dimethyl disulfide. Due to its unparalleled sensitivity and selectivity, which was not achievable with previous optical sensors, this technology enables the continuous monitoring of meat spoilage in its early stages on an hourly basis. This provides crucial insights into the exact moments when freshness begins to deteriorate and how long the meat can be stored for.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.