Abstract

AbstractThermally activated delayed fluorescence (TADF) has been explored actively in luminescent organic materials. Yet, realizing such TADF‐active, multifunctional emitters with high emission efficiency still remains hugely challenging. In this context, a series of twist‐conjugated organic molecules bearing diphenylsulfone and 9,9‐dimethylacridine moieties are designed and prepared, and are found to show, in one molecule, TADF, room‐temperature phosphorescence, triboluminescence, and aggregation‐induced emission enhancement. In addition, remarkably high photoluminescence quantum efficiency, up to ≈100%, is achieved for these novel molecules. Single‐crystal analysis and theoretical calculations reveal that the through‐space charge transfer (TSCT) effect in these molecules is responsible for both the multifunctional emission and high emission efficiency. A maximum external quantum efficiency of 20.1% is achieved, which is among the highest recorded in a solution‐processable device containing TSCT‐based TADF materials. These results illustrate a new approach to achieving highly efficient TADF‐active, multifunctional emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.