Abstract

In this research, a nitrogen- (N) and sulfur- (S) codoped carbon dot (CDs-IPM)-based sensor was synthesized using a single-step hydrothermal method. Specifically, microcrystalline cellulose (MCC) was the main raw material, which was extracted from banana pseudo-stem-based waste, while autonomous sulfonic acid-functionalized ionic liquid (SO3H-IL) and polyethylene glycol 400 (PEG 400) acted as the N, S dopant, and surface modifier, respectively. Comprehensive spectroscopic characterization of the synthesized CDs-IPM revealed the introduction of S, N atoms in the matrix with existence of surface oxygenic functional groups. The CDs-IPM possessed enhanced photoluminescence (PL) intensity, synthetic yield, and PL quantum yield (PLQY). Additionally, electron transfer between the CDs-IPM, hexavalent chromium (Cr(vi)), and subsequent ascorbic acid (AA) succeeded in turning the fluorescence on and off. The detection limit was 17 nM for Cr(vi), while it was 103 nM for AA. Our study data can simplify the process of synthesis of CDs utilizing biodegradable starting materials. The probe reported in this study may serve as a valuable addition to the field of environment monitoring by virtue of its enhanced detection sensitivity, high selectivity, and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.