Abstract

This study develops a high sensitive and selective “on-off-on” fluorescent probe for sequential detection of iron ion (Fe3+) and ascorbic acid (AA) based on nitrogen and sulfur co-doped carbon dots (N, S-CDs), which were synthesized by using chitosan and κ-carrageenan as raw materials through one-step hydrothermal protocol. The synthesized N,S-CDs possess particularly high quantum yield (QY = 59.31%), excellent stability and excitation dependent behavior, showing great potential for practical applications. Furthermore, N,S-CDs provided high selectivity and strong anti-interference to Fe3+ due to its fluorescence quenching performance, revealing a wide linear concentration range from 1 to 100 μM for the detection of Fe3+ ion with an extremely low limit of detection of 57 nM, and presented reliable and accurate results in actual sample detection of Fe3+. The overall fluorescence quenching mechanism of N,S-CDs with Fe3+ was due to the formation of N,S-CDs/Fe3+ initiated to the aggregation and electron transfer of N,S-CDs, resulting in the static quenching of fluorescence. More interestingly, AA could reduce Fe3+ to Fe2+ and efficaciously recover the quenched fluorescence of N,S-CDs/Fe3+. N,S-CDs/Fe3+ as “turn-on” fluorescent probe was further applied for detecting AA in a linear range of 0.5–90 μM with a detection limit of 38 nM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.