Abstract

P‐type dye sensitized solar cells (p‐DSCs) deliver much lower overall efficiency than their inverse model, n‐DSCs. However, they have fundamental and practical significance, in particular, their tandem structured solar cells with both p‐ and n‐photoelectrodes could offer great potential to significantly improve the efficiency of existing solar cells. A facile and environmentally friendly method is developed to directly one‐step grow hollow NiO spherical structures on fluorine‐doped tin oxide (FTO) substrate, in which a Ni2+ and polymer complex spherical structure is self‐constructed through a controlled solvent evaporation process, followed by calcination‐converting to a unique NiO hollow sphere film. The prepared material is further used as a photocathode in p‐type dye sensitized solar cells, resulting in 41% increase of an open‐circuit voltage and 18% enhancement of power conversion efficiency than NiO nanoparticles photocathode. The improved performance can be ascribed to suppressed charge recombination at the photocathode/electrolyte interface. This template‐free approach could be universally used to fabricate other nanostructured hollow spheres for a wide range of energy conversion applications such as electrochemical capacitors, chemical sensors, and electrochromic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.