Abstract

The ZnO/g-C3N4 composite was successfully synthesized by a simple one-step calcination of a urea and zinc acetate mixture. The photocatalytic activity of the synthesized composite was evaluated in the degradation of bisphenol E (BPE). The morphology, crystallinity, optical properties, and composition of the synthesized composite were characterized by using various analytical techniques such as scanning electron microscopy (SEM), transmitted electron microscopy (TEM), field emission-electron probe microanalysis (FE-EPMA), nitrogen adsorption and desorption isotherm measurement, Fourier-transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The degradation rate of BPE with the ZnO/g-C3N4 composite was 8 times larger than that obtained with pure g-C3N4 at the optimal conditions. The excellent photocatalytic activity was attributed to the synergistic effect between the g-C3N4 and ZnO, which enhanced the efficiency of charge separations, reduced the e-/h+ pairs recombination, and increased the visible light absorption ability. The radical scavenger studies indicated that the •O2 - and h+ species were mainly responsible for the degradation of BPE. The stability test suggested the chemical and photostability of the synthesized composite. Two possible photocatalytical mechanisms have been suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call