Abstract

Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.