Abstract

Carbon dots (CDs), because of their characteristic size (<10 nm) and highly fluorescent nature, can be internalized in biological cells or can be tagged to the key components of a living system. While these attributes can be potentially exploited for biomedical applications, the toxicity of CDs remains an important issue to be addressed. Both the synthesis approach and morphological attributes critically determine the dose-dependent toxicity and cytocompatibility of CDs. Against this perspective, we report herein a one-step colloidal synthesis of CDs using different reaction solvents that lead to the formation of three types of CDs (type I, type II, and type III CDs). The cytocompatibility and cellular uptake of CDs in human mesenchymal stem cells (hMSCs) are dependent on the nature of functionalization and concomitantly on the type of precursors. In particular, type I CDs are synthesized using citric acid, hexadecylamine, and octadecene that are immiscible in culture media. The type II CDs synthesized using citric acid and octadecene emit green fluorescence at a 488 nm excitation and were found to be agglomerated when internalized in hMSCs, whereas the type III CDs, synthesized using citric acid and deionized water, exhibit an agglomeration-free behavior. Further, type III CDs show a wide particle distribution, wide emission bandwidth range of 280-700 nm, threshold toxicity of 1 mg/mL, and good cytocompatibility with hMSCs, much better than those in the published reports. When benchmarked against commercial graphene quantum dots, the as-synthesized type III CDs have better electrical conductivity and cytocompatibility at a given dosage. Thus, the electroactive nature of synthesized type III CDs along with their inherent fluorescent property and less cytotoxicity would enable their potential applications in bio-imaging, directional lineage commitment, and cell-based therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.