Abstract

Porous materials that could recognize specific molecules from complex mixtures are of great potential in improving the current energy-intensive multistep separation processes. However, due to the highly similar structures and properties of the mixtures, the design of desired porous materials remains challenging. Herein, a sulfonate-functionalized metal-organic framework ZU-609 with suitable pore size and pore chemistry is designed for 1,3-butadiene (C4H6) purification from complex C4 mixtures. The sulfonate anions decorated in the channel achieve selective recognition of C4H6 from other C4 olefins with subtle polarity differences through C-H···O-S interactions, affording recorded C4H6/trans-2-C4H8 selectivity (4.4). Meanwhile, the shrunken mouth of the channel with a suitable pore size (4.6 Å) exhibits exclusion effect to the larger molecules cis-2-C4H8, iso-C4H8, n-C4H10 and iso-C4H10. Benefiting from the moderate C4 olefins binding affinity exhibited by sulfonate anions, the adsorbed C4H6 could be easily regenerated near ambient conditions. Polymer-grade 1,3-butadiene (99.5%) is firstly obtained from 7-component C4 mixtures via one adsorption-desorption cycle. The work demonstrates the great potential of synergistic recognition of size-sieving and thermodynamically equilibrium in dealing with complex mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call