Abstract

The one-pot synthesis of g-C3N4-MU isotype heterojunction has been produced by the thermal polycondensation method by mixing different ratios of precursors between melamine and urea. The isotype heterojunction g-C3N4-MU samples were characterized by X-ray diffraction spectroscopy, scanning electron microscope and energy-dispersive X-ray-spectroscopy, UV–Visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The band-gap energy of these photocatalysts reveals that they can work well under visible light. The photocatalytic performance of the samples was investigated over the photodegradation of reactive orange-16 (RO-16) dye and tetracycline hydrochloride (TC-HCl) under visible light irradiation. The isotype heterojunction of g-C3N4-M6U10 showed the highest degradation of 95 and 85.6% for RO-16 and TC-HCl, respectively under irradiation time of 100 and 120 min. The major reactive species was identified as O2–. Moreover, the reusability of the photocatalyst was investigated up to 3 cycles with good efficiency. The present synthesized isotype heterojunction g-C3N4-MU could be applied as a facile pathway for synthesis and as an effective pathway to resolve various environmental problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call