Abstract

We present a one-pot synthesis for well-defined nanostructured polymeric microparticles formed from block copolymers that could easily be adapted to commercial scale. We have utilized reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare block copolymers in a dispersion polymerization in supercritical carbon dioxide, an efficient process which uses no additional solvents and hence is environmentally acceptable. We demonstrate that a wide range of monomer types, including methacrylates, acrylamides, and styrenics, can be utilized leading to block copolymer materials that are amphiphilic (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylacrylamide)) and/or mechanically diverse (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylaminoethylmethacrylate)). Interrogation of the internal structure of the microparticles reveals an array of nanoscale morphologies, including multilayered, curved cylindrical, and spherical domains. Surprisingly, control can also be exerted by changing the chemical nature of the constituent blocks and it is clear that selective CO(2) sorption must strongly influence the block copolymer phase behavior, resulting in kinetically trapped morphologies that are different from those conventionally observed for block copolymer thin films formed in absence of CO(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.