Abstract

Facile fabrication of Fe-based nanotheranostic agents with the enhanced Chemodynamic therapy (CDT) effect and multiple functions is important for oncotherapy. In this report, noble-metal@FexOy core-shell nanoparticles (Au@FexOy NPs, AuRu@FexOy NPs, AuPt@FexOy NPs and AuPd@FexOy NPs) are one-pot constructed by a simply redox self-assembly strategy. As a typical example, AuPd@FexOy NPs are applied for oncotherapy. Compared to their crystalline counterparts (e.g., AuPd@c-Fe2O3 nanocrystals (NCs)), AuPd@FexOy NPs with the metastable FexOy shell can be activated by a small amount of NaBH4 to obviously enhance the production of ·OH in subsequent Fenton reaction (these activated products are termed as r-AuPd@FexOy NPs). In addition, a favorable photothermal effect (63.5% photothermal conversion efficiency) of r-AuPd@FexOy NPs can further promote the ·OH generation. Moreover, r-AuPd@FexOy NPs also show a pH-responsive T1-weighted MRI contrast property, CT imaging capacity and the function of regulating tumor microenvironment. This work presents an attractive route to prepare versatile nanotheranostic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.