Abstract
A porous zwitterionic monolithic column was prepared to rapidly and efficiently separate lysozyme from egg white. The monolith was synthesized in a stainless steel HPLC column (5 cm × 4.6 mm i.d.) by in-situ thermal initiated co-polymerization of N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine (MSA) and ethylene dimethacrylate (EDMA). Due to the combination of quaternary ammonium and sulfonic groups on the monolithic matrix in one-pot process, the hydrophobic carbon chain and hydrophilic radical were obtained, which provided multiple driving forces for neutral, basic and acidic analytes, thus mix-mode chromatography mechanism contributed to the retention of different charged proteins. Properties such as composition, morphology and stability of the MSA-co-EDMA monolithic column were characterized by various analytical methods and the results showed that the monolith has large through-pores, good hydrophilicity and permeability. The effects of mobile phase pH and ionic strength on proteins were investigated, drawing the conclusion that the main adsorption and elution mechanism of lysozyme on MSA-co-EDMA monolith was electrostatic interaction, while those of other proteins included hydrophobic, hydrophilic and electrostatic interactions. Therefore, efficient separation of lysozyme and other proteins could be successfully achieved by switching the pH of mobile phase. Lysozyme can be adsorbed using 20 mmol/L phosphate buffer (pH 7.0) and eluted with 20 mmol/L phosphate buffer (pH 2.0). To prove the practicality of the monolithic column, it was also applied in the separation of lysozyme in egg white, which means the work has the potential for further development in proteome analysis of real biological samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have