Abstract

(Z)-trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-alpha,alpha,beta-trisubstituted allylic alcohols. (Z)-trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metalate rearrangement that is followed by a boron-to-zinc transmetalation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed, (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl-protected alpha- and beta-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl-protected alpha-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (-)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. Alpha-ethyl and alpha-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.