Abstract

The complex preparation process and storage instability of nanoformulations hinders their development and commercialization. In this study, nanocapsules loaded with abamectin were prepared by interfacial polymerization at room temperature and ordinary pressure using the monomers of epoxy resin (ER) and diamine. The potential mechanisms of primary amine and tertiary amine in influencing the shell strength of the nanocapsules and the dynamic stability of abamectin nanocapsules (Aba@ER) in the suspension system were systematically researched. The tertiary amine catalyzed the self-polymerization of epoxy resin into linear macromolecules with unstable structures. The structural stability of the diamine curing agent with a primary amine group played a key role in enhancing the structural stability of the polymers. The intramolecular structure of the nanocapsule shell formed by isophorondiamine (IPDA) crosslinked epoxy resin has multiple spatial conformations and a rigid saturated six-membered ring. Its structure was stable, and the shell strength was strong. The formulation had stable dynamic changes during storage and maintained excellent biological activity. Compared with emulsifiable concentrate (EC), Aba@ER/IPDA had superior biological activity, and the field efficacy on tomato root-knot nematode was enhanced by approximately 31.28% at 150 days after transplanting. Aba@ER/IPDA, which has excellent storage stability and simple preparation technology, can provide a nanoplatform with industrial prospects for efficient pesticide delivery. © 2023 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.