Abstract
One-point commuting difference operators of rank 1 are considered. The coefficients in such operators depend on one functional parameter, and the degrees of shift operators in difference operators are positive. These operators are studied in the case of hyperelliptic spectral curves, where the base point coincides with a point of branching. Examples of operators with polynomial and trigonometric coefficients are constructed. Operators with polynomial coefficients are embedded in differential operators with polynomial coefficients. This construction provides a new method for constructing commutative subalgebras in the first Weyl algebra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have