Abstract

We study the problem of conjunctive query evaluation relative to a class of queries. This problem is formulated here as the relational homomorphism problem relative to a class of structures A , in which each instance must be a pair of structures such that the first structure is an element of A . We present a comprehensive complexity classification of these problems, which strongly links graph-theoretic properties of A to the complexity of the corresponding homomorphism problem. In particular, we define a binary relation on graph classes, which is a preorder, and completely describe the resulting hierarchy given by this relation. This relation is defined in terms of a notion that we call graph deconstruction and that is a variant of the well-known notion of tree decomposition. We then use this hierarchy of graph classes to infer a complexity hierarchy of homomorphism problems that is comprehensive up to a computationally very weak notion of reduction, namely, a parameterized version of quantifier-free, first-order reduction. In doing so, we obtain a significantly refined complexity classification of homomorphism problems as well as a unifying, modular, and conceptually clean treatment of existing complexity classifications. We then present and develop the theory of Ehrenfeucht-Fraïssé-style pebble games, which solve the homomorphism problems where the cores of the structures in A have bounded tree depth. This condition characterizes those classical homomorphism problems decidable in logarithmic space, assuming a hypothesis from parameterized space complexity. Finally, we use our framework to classify the complexity of model checking existential sentences having bounded quantifier rank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.