Abstract
We study the problem of conjunctive query evaluation relative to a class of queries; this problem is formulated here as the relational homomorphism problem relative to a class of structures A, wherein each instance must be a pair of structures such that the first structure is an element of A. We present a comprehensive complexity classification of these problems, which strongly links graph-theoretic properties of A to the complexity of the corresponding homomorphism problem. In particular, we define a binary relation on graph classes and completely describe the resulting hierarchy given by this relation. This binary relation is defined in terms of a notion which we call graph deconstruction and which is a variant of the well-known notion of tree decomposition. We then use this hierarchy of graph classes to infer a complexity hierarchy of homomorphism problems which is comprehensive up to a computationally very weak notion of reduction, namely, a parameterized version of quantifier-free reductions. In doing so, we obtain a significantly refined complexity classification of homomorphism problems, as well as a unifying, modular, and conceptually clean treatment of existing complexity classifications. We then present and develop the theory of Ehrenfeucht-Fraisse-style pebble games which solve the homomorphism problems where the cores of the structures in A have bounded tree depth. Finally, we use our framework to classify the complexity of model checking existential sentences having bounded quantifier rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.