Abstract

Accurate experimental measurements of the equation of state for strongly coupled plasmas (Γ⩾1), relevant to astrophysical, geologic and inertial confinement fusion applications, have been extremely difficult. In this pursuit, we have designed a one-dimensional dual-crystal x-ray microscope for making high-resolution measurements of shocks launched by laser pulses in high-density aluminum plasmas. Optical ray-tracing analysis of the design is presented including effects of surface aberrations. The spherically bent mica crystals are arranged at near normal incidence to operate at energies of 1.35 and 4.75 keV using the second and seventh order reflections, respectively. With a magnification of 45×, the microscope’s spatial resolution is predicted to be better than 2 μm when coupled to an x-ray streak camera. The addition of a grazing-incidence optic perpendicular to the imaging direction partially compensates astigmatism. This compensation provides an increase in collection efficiency at the streak camera slit by a factor of ∼15.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.