Abstract

Accurate but economical modeling of supersonic turbulent boundary layers is a standing challenge due to the intricate entanglement of temperature, density, and velocity fluctuations on top of the mean-field variation. Application of the van Driest transformation may describe well the mean state but cannot provide detailed flow information. This lack-in modeling coarse and fine-scale variability is addressed by the present study using a stochastic one-dimensional turbulence (ODT) model. ODT is a simulation methodology that represents the evolution of turbulent flow in a low-dimensional stochastic way. In this study, ODT is extended to fully compressible flows. An Eulerian framework and a conservative form of the governing equations serve as the basis of the compressible ODT model. Computational methods for statistical properties based on ODT realizations are also extended to compressible flows, and a comprehensive way of turbulent kinetic energy budget calculation based on compressible ODT is put forward for the first time. Two canonical direct numerical simulation cases of supersonic isothermal-wall channel flow at Mach numbers 1.5 and 3.0 with bulk Reynolds numbers 3000 and 4880, respectively, are used to validate the extended model. A rigorous numerical validation is presented, including the first-order mean statistics, the second-order root mean square statistics, and higher-order turbulent fluctuation statistics. In ODT results, both mean and root mean square profiles are accurately captured in the near-wall region. Near-wall temperature spectra reveal that temperature fluctuations are amplified at all turbulent scales as the effects of compressibility increase. This phenomenon is caused by intensified viscous heating at a higher Mach number, which is indicated by the steeper profiles of viscous turbulent kinetic energy budget terms in the very near-wall region. The low computational cost and predictive capabilities of ODT suggest that it is a promising approach for detailed modeling of highly turbulent compressible boundary layers. Furthermore, it is found that the ODT model requires a Mach-number-dependent increase in a viscous penalty parameter Z in wall-bounded turbulent flows to enable accurate capture of the buffer layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call