Abstract

In the present paper, we consider a (1 + 1)-dimensional gauge model consisting of two complex scalar fields interacting with each other through an Abelian gauge field. When the model’s gauge coupling constants are set to zero, the model possesses non-gauged Q-ball and kink solutions that do not interact with each other. It is shown here that for nonzero gauge coupling constants, the model has a soliton solution describing the system that consists of interacting Q-ball and kink components. These two components of the kink-Q-ball system have opposite electric charges, meaning that the total electric charge of the system vanishes. The properties of the kink-Q-ball system are studied both analytically and numerically. In particular, it was found that the system possesses a nonzero electric field and is unstable with respect to small perturbations in the fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.