Abstract

A mathematical model that describes the evolution of the current and voltage distributions in a 1D conductor interacting with a system of potentials is presented. The model can be used to describe transient and steady-state harmonic electric processes in a nonmagnetic system. The evolution of voltage in a thin distributed conductor is approximately described using nonuniform diffusion equation with spatially inhomogeneous coefficients. In addition, the formulas that describe the distributions of voltage and current phasors along the conductor are derived for harmonic regimes. The 1D procedure is tested for a hypothetical high-voltage system that contains a distributed conductor and three electrodes. The verification provided solutions to several harmonic and transient problems. The error of the 1D model is studied, and the applicability conditions are formulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.