Abstract

Adsorption is a promising method for the treatment of wastewater from the dyestuff industry due to its simplicity, high efficiency, low energy consumption and no secondary pollution. The capacity to separate adsorbents in a timely and efficient manner is a crucial factor in industrial applications. One-dimensional magnetic chains modified with polydopamine and in situ generated Ag nanoparticles (MC@PDA-Ag) were fabricated as highly regenerable adsorbents for methylene blue (MB). The magnetic chains were characterized by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption, X-ray photoelectron spectrometry, X-ray diffraction and magnetometry. The adsorption and catalytic degradation of MB by the materials were investigated. The regeneration capacity of MC@PDA-Ag was also evaluated. The specific saturation magnetization of MC@PDA-Ag is 38.2 emu g-1. The adsorption capacity of MC@PDA-Ag remained 76% of the initial value after 12 cycles of adsorption and elution. The novel adsorbents, which integrate adsorption and catalytic degradation, are anticipated to facilitate the development of magnetic adsorption materials for the remediation of dye pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.