Abstract

The practical use of solar-driven interfacial evaporation is hampered by high cost, low photothermal conversion efficiency, and poor stability. Herein, a one-dimensional Fe/C constructed photothermal membrane is rationally developed to replace precious metals via the combination of Fe plasmon resonance with carbon molecular thermal vibration. The membrane exhibits excellent light absorbance (95.72 ​%) and water evaporation rate (2.60 ​kg ​m−2 ​h−1) leading to photothermal conversion efficiency up to 95.65 ​% under 1 sun illumination. Janus Fe/C membrane with superhydrophobic and hydrophilic structure is further prepared by polydimethylsiloxane (PDMS) coating to improve long-term stability. The evaporation rate can be maintained at over 90 ​% after 80 ​h illumination for real seawater treatment with metal ion removal efficiency >99 ​%. It also shows high evaporation performance and stability for organic solvents such as IPA, and NMP. Thus, the 1D Fe/C constructed Janus membrane is a promising candidate for energy-saving solar-driven interfacial solvent evaporation including seawater desalination, wastewater treatment, and organic solvent purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.