Abstract
We introduce a one-dimensional non-equilibrium lattice gas model representing the processive motion of dynein molecular motors over the microtubule. We study both dynamical and stationary state properties for the model consisting of hardcore particles hopping on the lattice with variable step sizes. We find that the stationary state gap-distribution exhibits striking peaks around gap sizes that are multiples of the maximum step size, for both open and periodic boundary conditions. We verified this feature using a mean-field calculation. For open boundary conditions, we observe intriguing damped oscillator-like distribution of particles over the lattice with a periodicity equal to the maximum step size. To characterize transient dynamics, we measure the mean square displacement that shows weak superdiffusive growth with exponent $$\gamma \approx 1.34$$ for periodic boundary and ballistic growth ( $$\gamma \approx 2$$ ) for open boundary conditions at early times. We also study the effect of Langmuir dynamics on the density profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.