Abstract

Non-linear least square minimization algorithms are often employed to solve Diffuse Optical Tomography (DOT) inverse problem. However, it is time-consuming to calculate the Jacobian matrix. This work has proposed a data-driven neural network method to improve computational efficiency. The singular value decomposition is employed to compute the updated Jacobian and a mapping from boundary measurements to the singular values based on a convolutional neural network (CNN) is learned to obtain the singular values. The method is validated with 3D numerical simulation data. We have demonstrated that the approach can save computation time compared to Adjoint method, and reconstructed absorption coefficient close to Adjoint method.Clinical Relevance- These results are not focused on clinical relevance currently, but in the future may be helpful to accelerant DOT reconstruction in clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call