Abstract

ObjectiveCurrent adjuvant therapy for advanced-stage, recurrent, and high-risk endometrial cancer (EC) has not reduced mortality from this malignancy, and novel systemic therapies are imperative. Oncolytic viral therapy has been shown to be effective in the treatment of gynecologic cancers, and we investigated the in vitro and in vivo efficacy of the Edmonston strain of measles virus (MV) and vesicular stomatitis virus (VSV) on EC. MethodsHuman EC cell lines (HEC-1-A, Ishikawa, KLE, RL95-2, AN3 CA, ARK-1, ARK-2, and SPEC-2) were infected with Edmonston strain MV expressing the thyroidal sodium iodide symporter, VSV expressing either human or murine IFN-β, or recombinant VSV with a methionine deletion at residue 51 of the matrix protein and expressing the sodium iodide symporter. Xenografts of HEC-1-A and AN3 CA generated in athymic mice were treated with intratumoral MV or VSV or intravenous VSV. ResultsIn vitro, all cell lines were susceptible to infection and cell killing by all 3 VSV strains except KLE. In addition, the majority of EC cell lines were defective in their ability to respond to type I IFN. Intratumoral VSV-treated tumors regressed more rapidly than MV-treated tumors, and intravenous VSV resulted in effective tumor control in 100% of mice. Survival was significantly longer for mice treated with any of the 3 VSV strains compared with saline. ConclusionVSV is clearly more potent in EC oncolysis than MV. A phase 1 clinical trial of VSV in EC is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call