Abstract

BRAF is frequently mutated in various cancer types and contributes to tumorigenesis and metastasis. As an important switch in RAS signaling pathway, BRAF typically enables the activation of MEK and ERK, and its mutation significantly promotes metastasis. However, whether BRAF could stimulate metastasis via a distinct manner is still unknown. Herein, we found that a portion of the BRAF protein localized at the plasma membrane and that the BRAFV600E mutation led to abundant formation of filopodia, which is a hallmark of invasive cancer cells. Mechanistically, BRAF physically interacts with the pseudopod formation-related protein Vasodilator-stimulated phosphoprotein (VASP), and BRAF specifically catalyzes VASP phosphorylation at Ser157. VASP depletion or disruption of Ser157 phosphorylation preferentially reduced the motility, invasion and metastasis of tumor cells harboring oncogenic BRAF or KRAS. Moreover, in clinical cancer tissues, BRAFV600E was positively correlated with the extent of invasion, and tissues with BRAFV600E expression exhibited elevated levels of VASP Ser157 phosphorylation. Our study therefor reveals a noncanonical mechanism by which oncogenic BRAF or KRAS promotes metastasis, suggests that VASP Ser157 phosphorylation might serve as a valuable therapeutic target in BRAF or KRAS mutant cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.