Abstract
Malignant cells exhibit a high demand for amino acids to sustain their abnormal proliferation. Particularly, the intracellular accumulation of cysteine is often observed in cancer cells. Previous studies have shown that deprivation of intracellular cysteine in cancer cells results in the accumulation of lipid peroxides in the plasma membrane and induction of ferroptotic cell death, indicating that cysteine plays a critical role in the suppression of ferroptosis. Herein, we found that the oncogenic accumulation of cysteine also contributes to cancer cell proliferation by promoting the cell cycle progression, which is independent of its suppressive effect on ferroptosis. The growth ability of four types of cancer cells, including murine hepatocarcinoma cells, but not of primary hepatocytes, were dependent on the exogenous supply of cysteine. Deprivation of intracellular cysteine in cancer cells induced cell cycle arrest at the G0/G1 phase, accompanied by a decrease in the expression of cyclin D1 and D2 proteins. The cysteine deprivation-induced decrease in D-type cyclin expression was associated with the upregulation of eukaryotic translation initiation factor 4E binding protein (4E-BP1), which represses the translation of cyclin D1 and D2 proteins by binding to eukaryotic translation initiation factor 4E (eIF4E). Similar results were observed in hepatocarcinoma cells treated with erastin, an xCT inhibitor. These findings reveal an unappreciated role of cysteine in regulating the growth of malignant cancer cells and deepen our understanding of the cytotoxic effect of xCT inhibitor to prevent cancer cell proliferation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.