Abstract

Background:Microfluidic manipulation (including: pumping, mixing and concentrating effects) is highly challengeable for bioengineering and on-chip analysis applications such as point-of-care immune-detection systems. In this research we propose a configurable electrode structure to form various manipulation effects including pumping, mixing and concentrating processes by applying an Alternate Current (AC) electrokinetically-driven flow.Methods:By applying an inhomogeneous electric field causes temperature rise accompanied by temperature gradients generation inside the microchannel. As a result, an AC electrothermal flow generates inside the channel, which is efficient to generate mixing, pumping and concentrating effects.Results:The proposed system is studied numerically by Finite-Element-Method, Based on the results, a) bulk fluid velocity of 100 µm/s is achieved by exciting the electrodes in pumping mode, b) complete mixing efficiency is observed in mixing mode, c) for antibody-antigen binding process (concentrating mode), the surface reaction increases by the factor of 9 after 5 seconds of sample loading. Results reveal that the system is highly efficient for bio-fluid mediums.Conclusion:AC electrothermal fluid manipulation process was investigated numerically inside a microchannel for biological buffers. Back and forth fluid motions, clockwise/counter-clockwise rotational vortexes and also antibody-antigen linking enhancement were achieved by engineering the specific electrode patterns. The manipulation efficiency improves by increasing both the amplitude of electric potential and the ionic strength of biofluid. As a result, our proposed configurable device is of interest for onchip immunoassays and point-of-care devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.