Abstract
Amorphous Al2O3 is an attractive material for integrated photonics, providing both active and passive functionalities. Al2O3 exhibits high solubility for rare-earth ions with moderate quenching of luminescence, a wide transparency window (150-7000 nm) and low propagation loss. It is therefore a very attractive material for visible, near- and mid-IR on-chip active devices. We have developed two different integration procedures to integrate Al2O3 onto passive photonic platforms. A double photonic layer integration scheme permits the low-loss integration of rare-earth ion doped Al2O3 onto the Si3N4 photonic platform. A single photonic layer integration scheme, based on the photonic damascene process, permits the creation of active and passive regions at the same level on a wafer, with the consequent reduction of the number of fabrication steps compared to the vertical integration of two materials. On-chip amplifiers on Si3N4 with more than 10 dB of net gain at 1550 nm as well as the realization of narrow linewidth lasers on active-passive Al2O3 for label-free sensing applications will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.