Abstract

Rare earth ion doped potassium double tungstates (e.g. KY(WO4)2, KYb(WO4)2, and KGd(WO4)2) have long been used as laser and amplifier materials thanks to the high achievable gain provided by the rare-earth ions. This family of host materials is also very attractive for nonlinear optics due to their high nonlinear refractive index and Raman gain. Very efficient on-chip solid state lasers, frequency combs, supercontinuum sources and Raman lasers could be realized if high refractive index waveguides with the correct dispersion were developed. To date, the demonstrated integrated devices in rare-earth ion doped potassium double tungstates have shown very promising results, including high gain in on-chip amplifiers and high efficiency and output power in on-chip lasers. These devices, however, were fabricated using low refractive index contrast waveguides, which are not suitable for ring resonators or to achieve anomalous dispersion. High refractive index contrast KY(WO4)2 waveguides with high confinement are therefore needed as building blocks for active devices. In this work, pedestal disk resonators are proposed, based on a combination of swift ion irradiation, focused ion beam milling and a novel wet etching process. In-coupling of light into the first fabricated pedestal disks will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.