Abstract

This article is a part of the Special Issue on Intelligent Systems for Space Exploration.The Intelligent Payload Experiment (IPEX) is a CubeSat that flew from December 2013 through January 2015 and validated autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module of the Hyperspectral Infrared Imager (HyspIRI) mission concept. IPEX used several artificial intelligence technologies. First, IPEX used machine learning and computer vision in its onboard processing. IPEX used machine-learned random decision forests to classify images onboard (to downlink classification maps) and computer vision visual salience software to extract interesting regions for downlink in acquired imagery. Second, IPEX flew the Continuous Activity Scheduler Planner Execution and Re-planner AI planner/scheduler onboard to enable IPEX operations to replan to best use spacecraft resources such as file storage, CPU, power, and downlink bandwidth. First, the ground and flight operations concept for proposed HyspIRI IPM operations is described, followed by a description the ground and flight operations concept used for the IPEX mission to validate key elements of automation for the proposed HyspIRI IPM operations concept. The use of machine learning, computer vision, and automated planning onboard IPEX is also described. The results from the over-1-year flight of the IPEX mission are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.