Abstract
A Wilson system is a collection of finite linear combinations of time frequency shifts of a square integrable function. It is well known that, starting from a tight Gabor frame for $L^{2}(\mathbb{R})$ with redundancy 2, one can construct an orthonormal Wilson basis for $L^2(\mathbb{R})$ whose generator is well localized in the time-frequency plane. In this paper we use the fact that a Wilson system is a shift-invariant system to explore its relationship with Gabor systems. Specifically, we show that one can construct $d$-dimensional orthonormal Wilson bases starting from tight Gabor frames of redundancy $2^k$, where $k=1, 2, \hdots, d$. These results generalize most of the known results about the existence of orthonormal Wilson bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.