Abstract

We study well-posedness of a velocity-vorticity formulation of the Navier-Stokes equations, supplemented with no-slip velocity boundary conditions, a corresponding zero-normal condition for vorticity on the boundary, along with a natural vorticity boundary condition depending on a pressure functional. In the stationary case we prove existence and uniqueness of a suitable weak solution to the system under a small data condition. The topic of the paper is driven by recent developments of vorticity based numerical methods for the Navier-Stokes equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.