Abstract

Abstract We shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Kármán equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations is based on bifurcation theory. We will find critical values of the compressive load parameter by reducing von Kármán equations to an operator equation in Hölder spaces with a nonlinear Fredholm map of index zero. We will prove a sufficient condition for bifurcation by the use of a gradient version of the Crandall-Rabinowitz theorem due to A.Yu. Borisovich and basic notions of representation theory. Moreover, applying the key function method by Yu.I. Sapronov we will investigate the shape of bifurcation branches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.