Abstract
In another related work, U-statistics were used for non-asymptotic average-case analysis of random compressed sensing matrices. In this companion paper the same analytical tool is adopted differently-here we perform non-asymptotic worst-case analysis. Simple union bounds are a natural choice for worst-case analyses, however their tightness is an issue (and questioned in previous works). Here we focus on a theoretical U-statistical result, which potentially allows us to prove that these union bounds are tight. To our knowledge, this kind of (powerful) result is completely new in the context of CS. This general result applies to a wide variety of parameters, and is related to (Stein-Chen) Poisson approximation. In this paper, we consider i) restricted isometries, and ii) mutual coherence. For the bounded case, we show that -th order restricted isometry constants have tight union bounds, when the measurements m = O (k(1.5(+ log(n/k))). Here, we require the restricted isometries to grow linearly in , however we conjecture that this result can be improved to allow them to be fixed. Also, we show that mutual coherence (with the standard estimate √(4 log n)/m) have very tight union bounds. For coherence, the normalization complicates general discussion, and we consider only Gaussian and Bernoulli cases here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Signal Processing, IEEE Transactions on
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.