Abstract

As part of its Wellhead Protection Program, the U.S. EPA mandates the delineation of "time-of-travel capture zones" as the basis for the definition of wellhead protection zones surrounding drinking water production wells. Depending on circumstances the capture zones may be determined using methods that range from simply drawing a circle around the well to sophisticated ground water flow and transport modeling. The simpler methods are attractive when faced with the delineation of hundreds or thousands of capture zones for small public drinking water supply wells. On the other hand, a circular capture zone may not be adequate in the presence of an ambient ground water flow regime. A dimensionless time-of-travel parameter T is used to determine when calculated fixed-radius capture zones can be used for drinking water production wells. The parameter incorporates aquifer properties, the magnitude of the ambient ground water flow field, and the travel time criterion for the time-of-travel capture zone. In the absence of interfering flow features, three different simple capture zones can be used depending on the value of T . A modified calculated fixed-radius capture zone proves protective when T < 0.1, while a more elongated capture zone must be used when T > 1. For values of T between 0.1 and 1, a circular capture zone can be used that is eccentric with respect to the well. Finally, calculating T allows for a quick assessment of the validity of circular capture zones without redoing the delineation with a computer model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call