Abstract
In this paper we consider unconditional bases inL p(T), 1<p<∞,p ≠ 2, consisting of trigonometric polynomials. We give a lower bound for the degree of polynomials in such a basis (Theorem 3.4) and show that this estimate is best possible. This is applied to the Littlewood-Paley-type decompositions. We show that such a decomposition has to contain exponential gaps. We also consider unconditional polynomial bases inH p as bases in Bergman-type spaces and show that they provide explicit isomorphisms between Bergman-type spaces and natural sequences spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.