Abstract
Fundamental properties of unbounded composition operators in $L^2$-spaces are studied. Characterizations of normal and quasinormal composition operators are provided. Formally normal composition operators are shown to be normal. Composition operators generating Stieltjes moment sequences are completely characterized. The unbounded counterparts of the celebrated Lambert's characterizations of subnormality of bounded composition operators are shown to be false. Various illustrative examples are supplied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.