Abstract

In order to assess material properties and part homogeneity in carbon matrix composite (CMC) brake disks we have performed nondestructive evaluation, which are originally developed for aerospace applications. In this paper we have adopted several ultrasonic techniques to evaluate carbon matrix composites for the material properties that are attributable to the manufacturing process. In a carbon matrix composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of the CMC composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Optical micrograph had been examined on the surface of the CMCs using a destructive way. Also a motorized system was adopted to measure ultrasonic velocity on the point of the CMC materials under the same coupling conditions. Manual results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call