Abstract
In this article, we present two mechanisms for deducing logarithmic quantitative unique continuation bounds for certain classes of integral operators. In our first method, expanding the corresponding integral kernels, we exploit the logarithmic stability of the moment problem. In our second method we rely on the presence of branch-cut singularities for certain Fourier multipliers. As an application we present quantitative Runge approximation results for the operator with and acting on functions on
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.