Abstract
Several authors (myself included!) have suggested that turbulent mixing takes place in some, if not all, stars, and in particular that such mixing can explain the low solar neutrino flux. This turbulence is thought to be caused by differential rotation produced by braking due to angular momentum loss in a stellar wind, and/or to the effect of meridional circulation currents in redistributing angular momentum. Whilst such instabilities may exist even in the presence of a stabilizing distribution of chemical composition, they do not necessarily cause mixing. To be effective in mixing, the energy available to the instability be it differential rotation or any other mechanism, has to be sufficient to lift the helium rich matter in the interior of the star to the outer regions. This requires where Erot is the kinetic energy in rotation, Eg the gravitational energy, τth the thermal time scale and τnuc the nuclear evolution time scale of the star.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.