Abstract

A topology optimization approach for designing large deformation contact-aided shape morphing compliant mechanisms is presented. Such mechanisms can be used in varying operating conditions. Design domains are described by regular hexagonal elements. Negative circular masks are employed to perform dual task, i.e., to decide material states of each element and also, to generate rigid contact surfaces. Each mask is characterized by five design variables, which are mutated by a zero-order based hill-climbing optimizer. Geometric and material nonlinearities are considered. Continuity in normals to boundaries of the candidate designs is ensured using a boundary resolution and smoothing scheme. Nonlinear mechanical equilibrium equations are solved using the Newton–Raphson method. An updated Lagrange approach in association with segment-to-segment contact method is employed for the contact formulation. Both mutual and self contact modes are permitted. Efficacy of the approach is demonstrated by designing four contact-aided shape morphing compliant mechanisms for different desired curves. Performance of the deformed profiles is verified using a commercial software. The effect of frictional contact surface on the actual profile is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.